A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors
نویسندگان
چکیده
The novel human-computer interface (HCI) using bioelectrical signals as input is a valuable tool to improve the lives of people with disabilities. In this paper, surface electromyography (sEMG) signals induced by four classes of wrist movements were acquired from four sites on the lower arm with our designed system. Forty-two features were extracted from the time, frequency and time-frequency domains. Optimal channels were determined from single-channel classification performance rank. The optimal-feature selection was according to a modified entropy criteria (EC) and Fisher discrimination (FD) criteria. The feature selection results were evaluated by four different classifiers, and compared with other conventional feature subsets. In online tests, the wearable system acquired real-time sEMG signals. The selected features and trained classifier model were used to control a telecar through four different paradigms in a designed environment with simple obstacles. Performance was evaluated based on travel time (TT) and recognition rate (RR). The results of hardware evaluation verified the feasibility of our acquisition systems, and ensured signal quality. Single-channel analysis results indicated that the channel located on the extensor carpi ulnaris (ECU) performed best with mean classification accuracy of 97.45% for all movement's pairs. Channels placed on ECU and the extensor carpi radialis (ECR) were selected according to the accuracy rank. Experimental results showed that the proposed FD method was better than other feature selection methods and single-type features. The combination of FD and random forest (RF) performed best in offline analysis, with 96.77% multi-class RR. Online results illustrated that the state-machine paradigm with a 125 ms window had the highest maneuverability and was closest to real-life control. Subjects could accomplish online sessions by three sEMG-based paradigms, with average times of 46.02, 49.06 and 48.08 s, respectively. These experiments validate the feasibility of proposed real-time wearable HCI system and algorithms, providing a potential assistive device interface for persons with disabilities.
منابع مشابه
Real Time Monitoring using sEMG
A Wearable Electromyography device includes the advantage of Electromyography (EMG) sensors and provides a wired or wireless human machine interface (HMI) for interacting with computing systems and attached devices associated with electrical signals generated by specific movement of the patient’s muscles. Following initial automated self-calibration and positional localization processes, measur...
متن کاملNovel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System
Surface Electromyography (sEMG) activity of the biceps muscle was recorded from ten subjects performing isometric contraction until fatigue. A novel feature (1D spectro_std) was used to extract the feature that modeled three classes of fatigue, which enabled the prediction and detection of fatigue. Initial results of class separation were encouraging, discriminating between the three classes of...
متن کاملEvaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors
As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers ...
متن کاملContactless EMG sensors embroidered onto textile
To obtain maximum unobtrusiveness with sensors for monitoring health parameters on the human body, two technical solutions are combined. First we propose contactless sensors for capacitive electromyography measurements. Secondly, the sensors are integrated into textile, so complete fusion with a wearable garment is enabled. We are presenting the first successful measurements with such sensors. ...
متن کاملThe Effect of Radio Waves on the Quality and Safety of Wearable Sensors in Healthcare
The industrial Internet of Things (IoT) is aiming to interconnect humans, machines, materials, processes and services in a network. Wireless Sensor Network (WSN) comprises the less power consuming, light weight and effective Sensor Nodes (SNs) for higher network performance. Radio Frequency Identification (RFID) and sensor networks are both wireless technologies that provide limitless future po...
متن کامل